Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.007
Filter
1.
J Hazard Mater ; 470: 134159, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38565018

ABSTRACT

Household air pollution prevails in rural residences across China, yet a comprehensive nationwide comprehending of pollution levels and the attributable disease burdens remains lacking. This study conducted a systematic review focusing on elucidating the indoor concentrations of prevalent household air pollutants-specifically, PM2.5, PAHs, CO, SO2, and formaldehyde-in rural Chinese households. Subsequently, the premature deaths and economic losses attributable to household air pollution among the rural population of China were quantified through dose-response relationships and the value of statistical life. The findings reveal that rural indoor air pollution levels frequently exceed China's national standards, exhibiting notable spatial disparities. The estimated annual premature mortality attributable to household air pollution in rural China amounts to 966 thousand (95% CI: 714-1226) deaths between 2000 and 2022, representing approximately 22.2% (95% CI: 16.4%-28.1%) of total mortality among rural Chinese residents. Furthermore, the economic toll associated with these premature deaths is estimated at 486 billion CNY (95% CI: 358-616) per annum, constituting 0.92% (95% CI: 0.68%-1.16%) of China's GDP. The findings quantitatively demonstrate the substantial disease burden attributable to household air pollution in rural China, which highlights the pressing imperative for targeted, region-specific interventions to ameliorate this pressing public health concern.


Subject(s)
Air Pollution, Indoor , Rural Population , China/epidemiology , Humans , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Rural Population/statistics & numerical data , Cost of Illness , Air Pollutants/analysis , Mortality, Premature , Models, Theoretical , Environmental Exposure/adverse effects
2.
Eur Respir Rev ; 33(172)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38657996

ABSTRACT

Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.


Subject(s)
Allergens , Immunity, Innate , Serine Proteases , Humans , Allergens/immunology , Serine Proteases/metabolism , Serine Proteases/immunology , Animals , Air Pollution, Indoor/adverse effects , Serine Proteinase Inhibitors/therapeutic use , Inhalation Exposure/adverse effects , Respiratory Hypersensitivity/immunology , Respiratory Hypersensitivity/enzymology
3.
Ital J Pediatr ; 50(1): 69, 2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38616250

ABSTRACT

BACKGROUND: Pollution of the indoor environment represents a concern for human health, mainly in case of prolonged exposure such as in the case of women, children, the elderly, and the chronically ill, who spend most of their time in closed environments. MAIN BODY: The aim of the study is to organize a group of experts in order to evaluate the evidence and discuss the main risk factors concerning indoor air and the impact on human health as well as challenging factors regarding preventive strategies to reduce pollution. The experts highlighted the main risk factors concerning indoor air, including poor ventilation, climatic conditions, chemical substances, and socio-economic status. They discussed the impact on human health in terms of mortality and morbidity, as well as challenging factors regarding preventive strategies to reduce pollution. CONCLUSION: The experts identified strategies that can be reinforced to reduce indoor pollution and prevent negative consequences on human health at national and local levels.


Subject(s)
Air Pollution, Indoor , Child , Aged , Humans , Female , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , Child Health , Consensus , Risk Factors
4.
Sci Rep ; 14(1): 8163, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589435

ABSTRACT

Despite several studies conducted to investigate housing factors, the effects of housing construction materials on childhood ARI symptoms in Bangladesh remain unclear. Hence, the study aimed to measure such a correlation among children under the age of five. A hospital-based case-control study was conducted, involving 221 cases and 221 controls from January to April 2023. Bivariate and multivariate binary logistic regression was performed to measure the degree of correlation between housing construction materials and childhood ARI symptoms. Households composed of natural floor materials had 2.7 times (95% confidence interval 1.27-5.57) and households composed of natural roof materials had 1.8 times (95% confidence interval 1.01-3.11) higher adjusted odds of having under-five children with ARI symptoms than household composed of the finished floor and finished roof materials respectively. Households with natural wall type were found protective against ARI symptoms with adjusted indoor air pollution determinants. The study indicates that poor housing construction materials are associated with an increased risk of developing ARI symptoms among under-five children in Bangladesh. National policy regarding replacing poor housing materials with concrete, increasing livelihood opportunities, and behavioral strategies programs encouraging to choice of quality housing construction materials could eliminate a fraction of the ARI burden.


Subject(s)
Air Pollution, Indoor , Respiratory Tract Infections , Humans , Child , Infant , Housing , Case-Control Studies , Bangladesh/epidemiology , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/prevention & control , Respiratory Tract Infections/etiology , Construction Materials , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Risk Factors
5.
Ann Am Thorac Soc ; 21(3): 365-376, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38426826

ABSTRACT

Indoor sources of air pollution worsen indoor and outdoor air quality. Thus, identifying and reducing indoor pollutant sources would decrease both indoor and outdoor air pollution, benefit public health, and help address the climate crisis. As outdoor sources come under regulatory control, unregulated indoor sources become a rising percentage of the problem. This American Thoracic Society workshop was convened in 2022 to evaluate this increasing proportion of indoor contributions to outdoor air quality. The workshop was conducted by physicians and scientists, including atmospheric and aerosol scientists, environmental engineers, toxicologists, epidemiologists, regulatory policy experts, and pediatric and adult pulmonologists. Presentations and discussion sessions were centered on 1) the generation and migration of pollutants from indoors to outdoors, 2) the sources and circumstances representing the greatest threat, and 3) effective remedies to reduce the health burden of indoor sources of air pollution. The scope of the workshop was residential and commercial sources of indoor air pollution in the United States. Topics included wood burning, natural gas, cooking, evaporative volatile organic compounds, source apportionment, and regulatory policy. The workshop concluded that indoor sources of air pollution are significant contributors to outdoor air quality and that source control and filtration are the most effective measures to reduce indoor contributions to outdoor air. Interventions should prioritize environmental justice: Households of lower socioeconomic status have higher concentrations of indoor air pollutants from both indoor and outdoor sources. We identify research priorities, potential health benefits, and mitigation actions to consider (e.g., switching from natural gas to electric stoves and transitioning to scent-free consumer products). The workshop committee emphasizes the benefits of combustion-free homes and businesses and recommends economic, legislative, and education strategies aimed at achieving this goal.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Humans , Child , United States , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Natural Gas , Environmental Monitoring , Air Pollution/adverse effects , Air Pollution/prevention & control , Air Pollution/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/analysis
6.
Article in English | MEDLINE | ID: mdl-38541325

ABSTRACT

The objective of the study was to investigate the association between outdoor and indoor air pollution sources and atopic eczema among preschool children in South Africa. A cross-sectional design, following the International Study of Asthma and Allergies in Childhood (ISAAC) Phase III protocol, was applied. The study was conducted in Mabopane and Soshanguve Townships in the City of Tshwane Metropolitan Municipality in Gauteng, South Africa. A total population of 1844 preschool children aged 7 years and below participated in the study; 1840 were included in the final data analysis. Data were analyzed using multilevel logistic regression analysis. The prevalence of eczema ever (EE) and current eczema symptoms (ESs) was 11.9% and 13.3%, respectively. The use of open fires (paraffin, wood, or coal) for cooking and heating increased the likelihood of EE (OR = 1.63; 95% CI: 0.76-3.52) and current ESs (OR = 1.94; 95% CI: 1.00-3.74). Environmental tobacco smoke (ETS) exposure at home increased the likelihood of EE (OR = 1.66; 95% CI: 1.08-2.55) and current ESs (OR = 1.61; 95% CI: 1.07-2.43). Mothers or female guardians smoking cigarettes increased the likelihood of EE (OR = 1.50; 95% CI: 0.86-2.62) and current ESs (OR = 1.23; 95% CI: 0.71-2.13). The use of combined building materials in homes increased the likelihood of EE, and corrugated iron significantly increased the likelihood of current ESs. The frequency of trucks passing near the preschool children's residences on weekdays was found to be associated with EE and current ESs, with a significant association observed when trucks passed the children's residences almost all day on weekdays. Atopic eczema was positively associated with exposure to outdoor and indoor air pollution sources.


Subject(s)
Air Pollution, Indoor , Air Pollution , Dermatitis, Atopic , Eczema , Tobacco Smoke Pollution , Humans , Child, Preschool , Female , Air Pollution, Indoor/adverse effects , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/etiology , South Africa/epidemiology , Cross-Sectional Studies , Eczema/epidemiology , Tobacco Smoke Pollution/adverse effects , Tobacco Smoke Pollution/analysis , Air Pollution/analysis
7.
Article in English | MEDLINE | ID: mdl-38541284

ABSTRACT

Over the past decade, our understanding of the impact of air pollution on short- and long-term population health has advanced considerably, focusing on adverse effects on cardiovascular and respiratory systems. There is, however, increasing evidence that air pollution exposures affect cognitive function, particularly in susceptible groups. Our study seeks to assess and hazard rank the cognitive effects of prevalent indoor and outdoor pollutants through a single-centre investigation on the cognitive functioning of healthy human volunteers aged 50 and above with a familial predisposition to dementia. Participants will all undertake five sequential controlled exposures. The sources of the air pollution exposures are wood smoke, diesel exhaust, cleaning products, and cooking emissions, with clean air serving as the control. Pre- and post-exposure spirometry, nasal lavage, blood sampling, and cognitive assessments will be performed. Repeated testing pre and post exposure to controlled levels of pollutants will allow for the identification of acute changes in functioning as well as the detection of peripheral markers of neuroinflammation and neuronal toxicity. This comprehensive approach enables the identification of the most hazardous components in indoor and outdoor air pollutants and further understanding of the pathways contributing to neurodegenerative diseases. The results of this project have the potential to facilitate greater refinement in policy, emphasizing health-relevant pollutants and providing details to aid mitigation against pollutant-associated health risks.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollution , Humans , Air Pollutants/analysis , Air Pollution/analysis , Vehicle Emissions , Smoke , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Particulate Matter/analysis , Randomized Controlled Trials as Topic
8.
Sci Total Environ ; 927: 171897, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38522542

ABSTRACT

BACKGROUND: Systemic inflammation contributes to cardiovascular risk and chronic obstructive pulmonary disease (COPD) pathophysiology. Associations between systemic inflammation and exposure to ambient fine particulate matter (PM ≤ 2.5 µm diameter; PM2.5), and black carbon (BC), a PM2.5 component attributable to traffic and other sources of combustion, infiltrating indoors are not well described. METHODS: Between 2012 and 2017, COPD patients completed in-home air sampling over one-week intervals, up to four times (seasonally), followed by measurement of plasma biomarkers of systemic inflammation, C-reactive protein (CRP) and interleukin-6 (IL-6), and endothelial activation, soluble vascular adhesion molecule-1 (sVCAM-1). Ambient PM2.5, BC and sulfur were measured at a central site. The ratio of indoor/ambient sulfur in PM2.5, a surrogate for fine particle infiltration, was used to estimate indoor BC and PM2.5 of ambient origin. Linear mixed effects regression with a random intercept for each participant was used to assess associations between indoor and indoor of ambient origin PM2.5 and BC with each biomarker. RESULTS: 144 participants resulting in 482 observations were included in the analysis. There were significant positive associations between indoor BC and indoor BC of ambient origin with CRP [%-increase per interquartile range (IQR);95 % CI (13.2 %;5.2-21.8 and 11.4 %;1.7-22.1, respectively)]. Associations with indoor PM2.5 and indoor PM2.5 of ambient origin were weaker. There were no associations with IL-6 or sVCAM-1. CONCLUSIONS: In homes of patients with COPD without major sources of combustion, indoor BC is mainly attributable to the infiltration of ambient sources of combustion indoors. Indoor BC of ambient origin is associated with increases in systemic inflammation in patients with COPD, even when staying indoors.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Biomarkers , Particulate Matter , Pulmonary Disease, Chronic Obstructive , Soot , Pulmonary Disease, Chronic Obstructive/blood , Humans , Particulate Matter/analysis , Biomarkers/blood , Soot/analysis , Soot/adverse effects , Air Pollution, Indoor/analysis , Air Pollution, Indoor/statistics & numerical data , Air Pollution, Indoor/adverse effects , Male , Female , Air Pollutants/analysis , Air Pollutants/adverse effects , Aged , Middle Aged , Environmental Exposure/statistics & numerical data , Interleukin-6/blood , C-Reactive Protein/analysis , Inflammation/blood
9.
Ecotoxicol Environ Saf ; 275: 116247, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38520808

ABSTRACT

The epidemiological evidences for the association between cooking fuel exposure and respiratory health were inconsistent, and repeated-measures prospective evaluation of cooking fuel exposure was still lacking. We assessed the longitudinal association of chronic lung disease (CLD) and lung function with cooking fuel types among Chinese adults aged ≥ 40 years. In this prospective, nationwide representative cohort of the China Health and Retirement Longitudinal Study from 2011 to 2018, 9004 participants from 28 provinces in China were included. CLD was identified based on self-reported physician diagnosis in 2018. Lung function was assessed by peak expiratory flow (PEF) in 2011, 2013 and 2015. Multivariable logistic and linear mixed-effects repeated-measures models were conducted to measure the associations of CLD and PEF with cooking fuel types. Three-level mixed-effects model was performed as sensitivity analysis. Among the participants, 3508 and 3548 participants used persistent solid and clean cooking fuels throughout the survey, and 1948 participants who used solid cooking fuels at baseline switched to clean cooking fuels. Use of persistent clean cooking fuels (adjusted odds ratio [aOR] = 0.73, 95 % confidence interval [CI]: 0.61, 0.88) and switch of solid fuels to clean fuels (aOR = 0.81, 95 % CI: 0.67, 0.98) were associated with lower risk of CLD. The use of clean cooking fuels throughout the survey and switch of solid fuels to clean fuels in 2013 were also significantly associated with higher PEF level. Similar results were observed in stratified analyses and different statistical models. The evidence from CHARLS cohort suggested that reducing solid cooking fuel exposure was associated with lower risk of CLD and better lung function. Given the recent evidence, improving household air quality will reduce the burden of chronic lung diseases.


Subject(s)
Air Pollution, Indoor , Lung Diseases , Adult , Humans , Longitudinal Studies , Retirement , Prospective Studies , Lung Diseases/chemically induced , Lung Diseases/epidemiology , Cooking/methods , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , China/epidemiology
10.
Trials ; 25(1): 197, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38504367

ABSTRACT

BACKGROUND: Acute viral bronchiolitis is the most common reason for hospitalization of infants in the USA. Infants hospitalized for bronchiolitis are at high risk for recurrent respiratory symptoms and wheeze in the subsequent year, and longer-term adverse respiratory outcomes such as persistent childhood asthma. There are no effective secondary prevention strategies. Multiple factors, including air pollutant exposure, contribute to risk of adverse respiratory outcomes in these infants. Improvement in indoor air quality following hospitalization for bronchiolitis may be a prevention opportunity to reduce symptom burden. Use of stand-alone high efficiency particulate air (HEPA) filtration units is a simple method to reduce particulate matter ≤ 2.5 µm in diameter (PM2.5), a common component of household air pollution that is strongly linked to health effects. METHODS: BREATHE is a multi-center, parallel, double-blind, randomized controlled clinical trial. Two hundred twenty-eight children < 12 months of age hospitalized for the first time with bronchiolitis will participate. Children will be randomized 1:1 to receive a 24-week home intervention with filtration units containing HEPA and carbon filters (in the child's sleep space and a common room) or to a control group with units that do not contain HEPA and carbon filters. The primary objective is to determine if use of HEPA filtration units reduces respiratory symptom burden for 24 weeks compared to use of control units. Secondary objectives are to assess the efficacy of the HEPA intervention relative to control on (1) number of unscheduled healthcare visits for respiratory complaints, (2) child quality of life, and (3) average PM2.5 levels in the home. DISCUSSION: We propose to test the use of HEPA filtration to improve indoor air quality as a strategy to reduce post-bronchiolitis respiratory symptom burden in at-risk infants with severe bronchiolitis. If the intervention proves successful, this trial will support use of HEPA filtration for children with bronchiolitis to reduce respiratory symptom burden following hospitalization. TRIAL REGISTRATION: NCT05615870. Registered on November 14, 2022.


Subject(s)
Air Filters , Air Pollution, Indoor , Asthma , Bronchiolitis , Child , Infant , Humans , Quality of Life , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , Particulate Matter/adverse effects , Dust , Bronchiolitis/diagnosis , Bronchiolitis/prevention & control , Carbon , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
11.
Pathol Res Pract ; 255: 155157, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320440

ABSTRACT

Lung cancer (LCs) is still a serious health problem globally, with many incidences attributed to environmental triggers such as Volatile Organic Compounds (VOCs). VOCs are a broad class of compounds that can be released via various sources, including industrial operations, automobile emissions, and indoor air pollution. VOC exposure has been linked to an elevated risk of lung cancer via multiple routes. These chemicals can be chemically converted into hazardous intermediate molecules, resulting in DNA damage and genetic alterations. VOCs can also cause oxidative stress, inflammation, and a breakdown in the cellular protective antioxidant framework, all of which contribute to the growth of lung cancer. Moreover, VOCs have been reported to alter critical biological reactions such as cell growth, apoptosis, and angiogenesis, leading to tumor development and metastasis. Epidemiological investigations have found a link between certain VOCs and a higher probability of LCs. Benzene, formaldehyde, and polycyclic aromatic hydrocarbons (PAHs) are some of the most well-researched VOCs, with comprehensive data confirming their cancer-causing potential. Nevertheless, the possible health concerns linked with many more VOCs and their combined use remain unknown, necessitating further research. Identifying the toxicological consequences of VOCs in LCs is critical for establishing focused preventative tactics and therapeutic strategies. Better legislation and monitoring mechanisms can limit VOC contamination in occupational and environmental contexts, possibly reducing the prevalence of LCs. Developing VOC exposure indicators and analyzing their associations with genetic susceptibility characteristics may also aid in early identification and targeted therapies.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Lung Neoplasms , Volatile Organic Compounds , Humans , Volatile Organic Compounds/adverse effects , Volatile Organic Compounds/analysis , Air Pollutants/adverse effects , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis
12.
Clin. transl. oncol. (Print) ; 26(2): 352-362, feb. 2024.
Article in English | IBECS | ID: ibc-230181

ABSTRACT

The incidence and mortality of lung cancer in women are rising, with both increasing by 124% between 2003 and 2019. The main risk factor for lung cancer is tobacco use, but indoor radon gas exposure is one of the leading causes in nonsmokers. The most recent evidence demonstrates that multiple factors can make women more susceptible to harm from these risk factors or carcinogens. For this consensus statement, the Association for Lung Cancer Research in Women (ICAPEM) invited a group of lung cancer experts to perform a detailed gender-based analysis of lung cancer. Clinically, female patients have different lung cancer profiles, and most actionable driver alterations are more prevalent in women, particularly in never-smokers. Additionally, the impact of certain therapies seems to be different. In the future, it will be necessary to carry out specific studies to improve the understanding of the role of certain biomarkers and gender in the prognosis and evolution of lung cancer (AU)


Subject(s)
Humans , Male , Female , Air Pollution, Indoor/adverse effects , Lung Neoplasms/diagnosis , Lung Neoplasms/epidemiology , Lung Neoplasms/therapy , Radon/adverse effects , Risk Factors , Incidence
13.
Eur J Epidemiol ; 39(3): 299-311, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38393605

ABSTRACT

BACKGROUND: The burden of respiratory tract infections (RTIs) is high in childhood. Several residential exposures may affect relative rates. OBJECTIVES: To determine risk of RTIs in children ages 11 and 12 by residential exposures. METHODS: We included children in the Danish National Birth Cohort (DNBC) at ages 11 and 12. We estimated incidence risk ratios (IRR) and 95% confidence intervals (CI) for counts of RTIs within the last year by exposure to mold/dampness, gas stove usage, summer and winter candle-burning, fireplace usage, cats and dogs indoors, and farmhouse living. We also estimated IRR and 95% CI for RTIs for predicted scores of four extracted factors ('owned house', 'mold and dampness', 'candles', and 'density') from exploratory factor analyses (EFA). RESULTS: We included 42 720 children with complete data. Mold/dampness was associated with all RTIs (common cold: IRRadj 1.09[1.07, 1.12]; influenza: IRRadj 1.10 [1.05, 1.15]; tonsillitis: IRRadj 1.19 [1.10, 1.28]; conjunctivitis: IRRadj 1.16 [1.02, 1.32]; and doctor-diagnosed pneumonia: IRRadj 1.05 [0.90, 1.21]), as was the EFA factor 'mold/dampness' for several outcomes. Gas stove usage was associated with conjunctivitis (IRRadj 1.25 [1.05, 1.49]) and with doctor-diagnosed pneumonia (IRRadj 1.14 [0.93, 1.39]). Candle-burning during summer, but not winter, was associated with several RTIs, for tonsillitis in a dose-dependent fashion (increasing weekly frequencies vs. none: [IRRadj 1.06 [0.98, 1.14], IRRadj 1.16 [1.04, 1.30], IRRadj 1.23 [1.06, 1.43], IRRadj 1.29 [1.00, 1.67], and IRRadj 1.41 [1.12, 1.78]). CONCLUSION: Residential exposures, in particular to mold and dampness and to a lesser degree to indoor combustion sources, are related to the occurrence of RTIs in children.


Subject(s)
Air Pollution, Indoor , Conjunctivitis , Pneumonia , Respiratory Tract Infections , Tonsillitis , Child , Humans , Animals , Cats , Dogs , Air Pollution, Indoor/adverse effects , Birth Cohort , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Fungi , Denmark/epidemiology
14.
BMC Public Health ; 24(1): 488, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365615

ABSTRACT

BACKGROUND: Stunting in children is the term for reduced linear growth and development, which is frequently brought on by a persistently inadequate diet, recurrent infections and chronic diseases or poor health conditions. Apart from the classic covariates of stunting, which include diet and illness, the relative contribution of household air pollution to chronic nutrition conditions is least studied. Hence, this study is conducted to investigate the impact of household air pollution on the linear growth of under-five children in Jimma town, Ethiopia. METHODS: A prospective cohort study was employed to collect data from 280 under-five children who lived in households using solid fuel (exposed group, n = 140) and clean fuel (unexposed group, n = 140). Height-for-age Z scores were compared in both groups over a 12-month follow-up period. The difference in differences estimators were used for comparison of changes in the height-for-age Z scores from baseline to end line in exposed and non-exposed groups. The independent effect of the use of solid fuels on height-for-age Z scores was analyzed through a multivariable linear regression model. Statistical Significances were declared at P < 0.05 and 95% CI level. RESULTS: In an unadjusted model (Model 1), compared with the clean fuel type, the mean difference in the height-for-age Z score of children in households using solid fuel was lower by 0.54 (-0.54, 95% CI -0.97, -0.12, P = 0.011). The beta coefficient remained negative after adjusting for age and sex (Model 2 -0.543, 95% CI -1.373, -0.563) and sociodemographic variables (Model 3: -0.543, 95% CI -1.362, -0.575). In the final model (Model 4), which adjusted for wealth quantile, dietary practice, water, sanitation and hygiene status and household food insecurity access scale, the beta coefficient held the same and significant (beta: -0.543, 95% CI -1.357, -0.579, P < 0.001). Higher HAZ scores were observed among female child (ß: = 0.48, 95%CI: 0.28, 0.69), Child with father attended higher education (ß: = 0.304 95%CI: 0.304, 95% CI 0.19, 0.41) as compared to male gender and those who did not attend a formal education, respectively. In contrast, child living in households with poor hygiene practices had lower HAZ score (ß: -0.226, 95% CI: -0.449, -0.003), P < 0.001. CONCLUSIONS: Exposure to indoor air pollution was inversely related to linear growth. Furthermore, sex, educational status and hygiene were found relevant predictors of linear growth. In such a setting, there is a need to step up efforts to design and implement public education campaigns regarding the health risks associated with exposure to household air pollution. Promoting improvements to kitchen ventilation and the use of improved cooking stoves, which will help to mitigate the detrimental effects of indoor air pollution on child growth impairment and its long-term effects.


Subject(s)
Air Pollution, Indoor , Air Pollution , Child , Humans , Male , Female , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Ethiopia/epidemiology , Prospective Studies , Growth Disorders/epidemiology , Growth Disorders/etiology , Cooking
15.
Environ Health ; 23(1): 6, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233832

ABSTRACT

BACKGROUND: In low- and middle-income countries countries, millions of deaths occur annually from household air pollution (HAP), pulmonary tuberculosis (PTB), and HIV-infection. However, it is unknown whether HAP influences PTB risk among people living with HIV-infection. METHODS: We conducted a case-control study among 1,277 HIV-infected adults in Bukavu, eastern Democratic Republic of Congo (February 2018 - March 2019). Cases had current or recent (<5y) PTB (positive sputum smear or Xpert MTB/RIF), controls had no PTB. Daily and lifetime HAP exposure were assessed by questionnaire and, in a random sub-sample (n=270), by 24-hour measurements of personal carbon monoxide (CO) at home. We used multivariable logistic regression to examine the associations between HAP and PTB. RESULTS: We recruited 435 cases and 842 controls (median age 41 years, [IQR] 33-50; 76% female). Cases were more likely to be female than male (63% vs 37%). Participants reporting cooking for >3h/day and ≥2 times/day and ≥5 days/week were more likely to have PTB (aOR 1·36; 95%CI 1·06-1·75) than those spending less time in the kitchen. Time-weighted average 24h personal CO exposure was related dose-dependently with the likelihood of having PTB, with aOR 4·64 (95%CI 1·1-20·7) for the highest quintile [12·3-76·2 ppm] compared to the lowest quintile [0·1-1·9 ppm]. CONCLUSION: Time spent cooking and personal CO exposure were independently associated with increased risk of PTB among people living with HIV. Considering the high burden of TB-HIV coinfection in the region, effective interventions are required to decrease HAP exposure caused by cooking with biomass among people living with HIV, especially women.


Subject(s)
Air Pollution, Indoor , Air Pollution , HIV Infections , Tuberculosis, Pulmonary , Adult , Humans , Male , Female , Case-Control Studies , HIV Infections/epidemiology , Tuberculosis, Pulmonary/epidemiology , Air Pollution, Indoor/adverse effects
16.
Arch Toxicol ; 98(3): 617-662, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243103

ABSTRACT

Assessment factors (AFs) are essential in the derivation of occupational exposure limits (OELs) and indoor air quality guidelines. The factors shall accommodate differences in sensitivity between subgroups, i.e., workers, healthy and sick people, and occupational exposure versus life-long exposure for the general population. Derivation of AFs itself is based on empirical knowledge from human and animal exposure studies with immanent uncertainty in the empirical evidence due to knowledge gaps and experimental reliability. Sensory irritation in the eyes and airways constitute about 30-40% of OELs and is an abundant symptom in non-industrial buildings characterizing the indoor air quality and general health. Intraspecies differences between subgroups of the general population should be quantified for the proposal of more 'empirical' based AFs. In this review, we focus on sensitivity differences in sensory irritation about gender, age, health status, and vulnerability in people, based solely on human exposure studies. Females are more sensitive to sensory irritation than males for few volatile substances. Older people appear less sensitive than younger ones. However, impaired defense mechanisms may increase vulnerability in the long term. Empirical evidence of sensory irritation in children is rare and limited to children down to the age of six years. Studies of the nervous system in children compared to adults suggest a higher sensitivity in children; however, some defense mechanisms are more efficient in children than in adults. Usually, exposure studies are performed with healthy subjects. Exposure studies with sick people are not representative due to the deselection of subjects with moderate or severe eye or airway diseases, which likely underestimates the sensitivity of the group of people with diseases. Psychological characterization like personality factors shows that concentrations of volatile substances far below their sensory irritation thresholds may influence the sensitivity, in part biased by odor perception. Thus, the protection of people with extreme personality traits is not feasible by an AF and other mitigation strategies are required. The available empirical evidence comprising age, lifestyle, and health supports an AF of not greater than up to 2 for sensory irritation. Further, general AFs are discouraged for derivation, rather substance-specific derivation of AFs is recommended based on the risk assessment of empirical data, deposition in the airways depending on the substance's water solubility and compensating for knowledge and experimental gaps. Modeling of sensory irritation would be a better 'empirical' starting point for derivation of AFs for children, older, and sick people, as human exposure studies are not possible (due to ethical reasons) or not generalizable (due to self-selection). Dedicated AFs may be derived for environments where dry air, high room temperature, and visually demanding tasks aggravate the eyes or airways than for places in which the workload is balanced, while indoor playgrounds might need other AFs due to physical workload and affected groups of the general population.


Subject(s)
Air Pollution, Indoor , Occupational Exposure , Male , Adult , Female , Animals , Child , Humans , Aged , Reproducibility of Results , Eye , Respiratory System , Air Pollution, Indoor/adverse effects
17.
Sci Rep ; 14(1): 135, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38167981

ABSTRACT

This study aims to characterize levels of molds, bacteria, and environmental pollutants, identify the associations between indoor mold and dampness exposures and childhood allergic diseases, including asthma, allergic rhinitis, atopic dermatitis, using three different exposure assessment tools. A total of 50 children with their parents who registered in Seoul and Gyeonggi-do in Korea participated in this study. We collated the information on demographic and housing characteristics, environmental conditions, and lifestyle factors using the Korean version of the International Study of Asthma and Allergies in Childhood questionnaire. We also collected environmental monitoring samples of airborne molds and bacteria, total volatile organic compounds, formaldehyde, and particulate matter less than 10 µm. We evaluated and determined water damage, hidden dampness, and mold growth in dwellings using an infrared (IR) thermal camera and field inspection. Univariate and multivariate regression analyses were performed to evaluate the associations between prevalent allergic diseases and exposure to indoor mold and dampness. Indoor mold and bacterial levels were related to the presence of water damage in dwellings, and the mean levels of indoor molds (93.4 ± 73.5 CFU/m3) and bacteria (221.5 ± 124.2 CFU/m3) in water-damaged homes were significantly higher than those for molds (82.0 ± 58.7 CFU/m3) and for bacteria (152.7 ± 82.1 CFU/m3) in non-damaged dwellings (p < 0.05). The crude odds ratios (ORs) of atopic dermatitis were associated with < 6th floor (OR = 3.80), and higher indoor mold (OR = 6.42) and bacterial levels (OR = 6.00). The crude ORs of allergic diseases, defined as a group of cases who ever suffered from two out of three allergic diseases, e.g., asthma and allergic rhinitis, and allergic rhinitis were also increased by 3.8 and 9.3 times as large, respectively, with water damage (+) determined by IR camera (p < 0.05). The adjusted OR of allergic rhinitis was significantly elevated by 10.4 times in the water-damaged dwellings after adjusting age, sex, and secondhand smoke. Therefore, a longitudinal study is needed to characterize dominant mold species using DNA/RNA-based sequencing techniques and identify a causal relationship between mold exposure and allergic diseases in the future.


Subject(s)
Air Pollution, Indoor , Asthma , Dermatitis, Atopic , Rhinitis, Allergic , Child , Humans , Dermatitis, Atopic/etiology , Dermatitis, Atopic/complications , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Asthma/etiology , Asthma/complications , Fungi , Rhinitis, Allergic/etiology , Seoul
18.
BMC Geriatr ; 24(1): 81, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253994

ABSTRACT

BACKGROUND: Studies across multiple countries reveal that depression and sleep disorders can lead to cognitive decline. This study aims to speculate on the effect of different sources of indoor air pollution on cognition and to explore the mediation effect of depression and sleep disorders on cognition when exposed to indoor air pollution. We hypothesize that an older adult experiences higher cognitive decline from indoor pollution when mediated by depression and sleep disorders. METHODS: We use data from Longitudinal Aging Study in India (LASI), 2017-2018, and employ a multiple mediation model to understand the relationship between indoor air pollution and cognition through sleep disorders and depression while adjusting for possible confounders. Sensitivity analysis was applied to see the effect of different sources of indoor pollution (cooking fuel, indoor smoke products, and secondhand smoke) on cognitive performance. RESULTS: The effect of three sources of indoor pollutants on cognition increased when combined, indicating stronger cognitive decline. Unclean cooking practices, indoor smoke (from incense sticks and mosquito coils), and secondhand smoke were strongly associated with sleep disorders and depression among older adults. Indoor air pollution was negatively associated with cognitive health (ß= -0.38) while positively associated with depression (ß= 0.18) and sleep disorders (ß= 0.038) acting as mediators. Sensitivity analysis explained 45% variability while adjusting for confounders. CONCLUSION: The study lays a foundation for future investigations into the nexus of indoor pollution and mental health. It is essential to formulate policies to reduce exposure to varying sources of indoor air pollutants and improve screening for mental health services as a public health priority.


Subject(s)
Air Pollution, Indoor , Sleep Wake Disorders , Tobacco Smoke Pollution , Humans , Aged , Air Pollution, Indoor/adverse effects , Depression/diagnosis , Depression/epidemiology , Cognition , Sleep Wake Disorders/diagnosis , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/etiology , India/epidemiology
19.
PLoS One ; 19(1): e0297085, 2024.
Article in English | MEDLINE | ID: mdl-38271409

ABSTRACT

BACKGROUND: Three billion people in low- and middle-income countries are exposed to household air pollution as they use biomass fuel for cooking. We investigated the associations between solid fuel use and nasopharyngeal (NP) inflammation, as well as the associations between high pneumococcal density and NP inflammation, in mothers and children in rural and urban Ethiopia. MATERIALS AND METHODS: Sixty pairs of mothers (median age, 30 years; range, 19-45 years) with a child (median age, 9 months; range, 1-24 months) were included from rural Butajira (n = 30) and urban Addis Ababa (n = 30) in Ethiopia. The cohort was randomly selected from a previous study of 545 mother/child pairs included 2016. Questionnaire-based data were collected which included fuel type used (solid: wood, charcoal, dung or crop waste; cleaner: electricity, liquefied petroleum gas). Nasopharyngeal (NP) samples were collected from all mothers and children and analyzed for the levels of 18 cytokines using a Luminex immunoassay. Pneumococcal DNA densities were measured by a real-time multiplex PCR and a high pneumococcal density was defined as a cyclic threshold (Ct) value ≤ 30. RESULTS: Mothers from rural areas had higher median CXCL8 levels in NP secretions than those from urban areas (8000 versus 1900 pg/mL; p < 0.01), while rural children had slightly higher IL-10 levels than those from the urban area (26 vs 13 pg/mL; p = 0.04). No associations between fuel type and cytokine levels were found. However, a high pneumococcal density was associated with higher levels of cytokines in both mothers (CCL4, CXCL8, IL-1ß, IL-6 and VEGF-A) and children (CCL4, CXCL8, IL-1ß, IL-6 and IL-18). CONCLUSIONS: No significant associations were found between solid fuel use and NP inflammation in Ethiopian mothers and children, but the inflammatory activity was higher in individuals living in the rural compared to the urban area. In addition, high cytokine levels were associated with high pneumococcal density in both mothers and children, indicating a significant impact of NP pathogens on inflammatory mediator levels in upper airways.


Subject(s)
Air Pollution, Indoor , Air Pollution , Child , Female , Humans , Adult , Infant , Mothers , Cross-Sectional Studies , Ethiopia/epidemiology , Interleukin-6/analysis , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Streptococcus pneumoniae , Inflammation , Cooking
20.
Int J Hyg Environ Health ; 256: 114310, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38183794

ABSTRACT

BACKGROUND: Gas cooking is an important source of indoor air pollutants, and there is some limited evidence that it might adversely be associated with respiratory health. Using repeated cross-sectional data from the multi-centre international European Community Respiratory Health Survey, we assessed whether adults using gas cookers have increased risk of respiratory symptoms compared to those using electric cookers and tested whether there was effect modification by a priori selected factors. METHODS: Data on respiratory symptoms and gas cooking were collected from participants at 26-55 and 38-67 years (median time between examinations 11.4 years) from interviewer-led questionnaires. Repeated associations between gas cooking (versus electric) and respiratory symptoms were estimated using multivariable mixed-effects logistic regression models adjusted for age, sex, study arm, smoking status, education level, and included random intercepts for participants within study centres. Analyses were repeated using a 3-level variable for type of cooker and gas source. Effect modification by ventilation habits, cooking duration, sex, age atopy, asthma, and study arm were examined. RESULTS: The sample included 4337 adults (43.7% males) from 19 centres in 9 countries. Gas cooking increased the risk of "shortness of breath whilst at rest" (OR = 1.38; 95%CI: 1.06-1.79) and "wheeze with breathlessness" (1.32; 1.00-1.74). For several other symptoms, effect estimates were larger in those who used both gas hobs and ovens, had a bottled gas source and cooked for over 60 min per day. Stratifying results by sex and age found stronger associations in females and younger adults. CONCLUSION: This multi-centre international study, using repeat data, suggested using gas cookers in the home was more strongly associated than electric cookers with certain respiratory symptoms in adults. As gas cooking is common, these results may play an important role in population respiratory health.


Subject(s)
Air Pollution, Indoor , Asthma , Adult , Female , Humans , Male , Air Pollution, Indoor/adverse effects , Asthma/epidemiology , Cooking/methods , Cross-Sectional Studies , Surveys and Questionnaires , Middle Aged , Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...